服务器硬件优化探讨(二)

网络整理 - 07-29

上期笔者就影响服务器稳定与安全之因素进行了探讨,主要介绍了服务器的电源供应、散热系统、主板选择。本期主要介绍一些CPU最新发展和选用服务器CPU的经验供大家参考。

一、主频不再作为CPU性能的衡量标准

众所周知CPU是服务器的心脏,一台服务器所使用的CPU基本决定其性能和档次。曾几何时我们以CPU主频(核心时脉频率)判断CPU性能的高低,Intel的CPU也以高主频策略占据了更多的市场。多年以来,Intel一直恪守着“摩尔定律”主频决定一切的原则,从MHz到GHz,工程师们最关注的就只有一件事:如何提高CPU的工作频率。

随着CPU科技的不断发展,主频已经发展到近4GHz,晶圆制程也从180纳米、130纳米、逐步转到90纳米甚至65纳米。随着主频的提升,制程的缩小,CPU发热问题也越来越突出。近期Intel放弃了开发更高主频率的CPU,转向发展双核心甚至多核心CPU,主要是大功耗电晶体所带来的散热问题未能解决,所以4GHz Pentium(P4) CPU尙未推出市场。

二、散热问题成主频提升瓶颈

CPU是服务器的核心,也是“热心”(发热的中心),高温时CPU会自动将工作效率降低,所以CPU的温度对于其性能至关重要。

然而解决CPU的散热问题谈何容易!试想当年的Pentium MMX 200MHz,用的只是一个小风扇。而现在的发烧友都在使用水冷、干冰制冷、甚至有些超频发烧友在使用液氮制冷,可见CPU的发热量增长是多么的大。

随 着集成的电晶体增多,CPU的功耗和发热量都增加了。按过去的经验,通过采用新的制造工艺,可以将功耗降下来:比如从180纳米过渡到130纳米之后,Tualatin核心比Coppermine核心的功耗有了明显的下降。但130纳米到90纳米,功耗递减的规律失效了。例如旧型130纳米P 4 3.2GC Northwood 才82W,新型90纳米P4 3.2GE Prescott功耗值达到103W。

制程的缩小会减少CPU核心所占用的面积,但其他相关部件就可能会增大,而且这种减小与增大幷不是一个线性的关系。减小面积也需要降低晶片的工作电压,例如,130纳米的Hammer处理器其工作电压为1.5V,90纳米的Hammer需要在1.4V下工作,而90纳米的Prescott则只能在1.2V的电压下正常工作。一颗晶片的功耗由电路工作中产生的动态功耗以及由漏出电流造成的静态功耗构成。电压的降低意味着晶片的电晶体动态损耗会降低,但是减小面积的同时暂态泄漏电流就会增大,而且随着电晶体面积的减小,这个漏电电流会以几何级数增长。在以前的制造工艺中,漏电电流几乎可以忽略,比如在0.25纳米制程的晶片中,你几乎无法检测到漏电流的存在,但是到了90纳米时代,晶片的线宽缩小,电晶体的栅极变得越来越薄,漏出电流越来越大,所以漏电所造成的影响就已经成为电能消耗的首要因素,而同时也正是由此引发了发热过巨的大问题。

制程的缩小使得CPU核心可容纳更多的电晶体,所以Intel在提升主频的同时也增加了L2缓存(Cache)数以提升整体性能。CPU的电晶体数目骤增导致了其总功耗的增长,这是CPU发热增长的第二个原因。Prescott的核心面积比Northwood小了25平方毫米,却比后者多容纳了7000万个电晶体!多出的7000万个电晶体工作时释放的热量可想而知。4GHz的Pentium4处理器,虽然主频是顶级,但是功耗却一定不低,据说满负荷工作会达到200W!我想这才是Intel放弃4GHz处理器发布计划的原因吧。

三、双核心架构及增加缓存成新宠

Intel将CPU的架构从单核心发展到双核心,主要是因为目前CPU运算核心发展已达极致,而依靠增加主频方式导致CPU发热量大增,性能却不见得同步成长。现在各个厂商都把提升CPU性能的希望寄托了在双核心甚至是多核心上,增加缓存(Cache)也是办法之一。

谈到双核心处理器,相信不少朋友会问:双核心技术与超线程(Hyper-Threading)有何不同呢?毕竟以前Intel的P4利用超线程技术已经实现了“双核”的功用。从原理上来说,超线程技术可以让单CPU拥有处理多线程的能力,而物理上只使用一个处理器,但作业系统等软体将其识别为两个逻辑处理器。虽然支援超线程的P4能同时执行两个线程,但在执行多线程时两个逻辑处理器均只能交替工作,因此,超线程技术所带来的性能提升远不能等同于两个相同主频处理器带来的性能提升。如果要让处理器资源真正实现幷行处理模式,还需要处理器引入物理双内核设计!在作业系统看来,它是实实在在的双处理器,可以同时执行多项任务。理论上说,双核心处理器的性能几乎比单核心处理器高50%—70%。而且增加硬体核心幷不需要增加太多晶体管,也可通过削减二级缓存的容量以保持适当的电晶体规模,因此也不会带来过多的功耗负担。